KLASIFIKASI DATA MULTIDIMENSI MENGGUNAKAN SUBTRACTIVE CLUSTERING DAN K-NEAREST NEIGHTBOR
نویسندگان
چکیده
منابع مشابه
Multidimensi Pada Data Warehouse Dengan Menggunakan Rumus Kombinasi
Multidimensional in data warehouse is a compulsion and become the most important for information delivery, without multidimensional data warehouse is incomplete. Multidimensional give the able to analyze business measurement in many different ways. Multidimensional is also synonymous with online analytical processing (OLAP).
متن کاملDensity Based k-Nearest Neighbors Clustering Algorithm for Trajectory Data
With widespread availability of low cost GPS, cellular phones, satellite imagery, robotics, Web traffic monitoring devices, it is becoming possible to record and store data about the movement of people and objects at a large amount. While these data hide important knowledge for the enhancement of location and mobility oriented infrastructures and services, by themselves, they demand the necessa...
متن کاملPrivacy-Preserving and K- Nearest Means Clustering over Relational Data
Data Mining has wide use in many fields such as financial, medication, medical research and among govt. departments. Classification is one of the widely applied works in data mining applications. For the past several years, due to the increase of various privacy problems, many conceptual and realistic alternatives to the classification issue have been suggested under various protection designs....
متن کاملKlasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization
Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...
متن کاملImproving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering
Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Transformatika
سال: 2012
ISSN: 2460-6731,1693-3656
DOI: 10.26623/transformatika.v10i1.65