Kirchhoff equations with strong damping

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 2 01 4 Kirchhoff equations with strong damping

We consider Kirchhoff equations with strong damping, namely with a friction term which depends on a power of the “elastic” operator. We address local and global existence of solutions in two different regimes depending on the exponent in the friction term. When the exponent is greater than 1/2, the dissipation prevails, and we obtain global existence in the energy space assuming only degenerate...

متن کامل

Blow-up of solutions to a class of Kirchhoff equations with strong damping and nonlinear dissipation

and many authors have studied the existence and uniqueness of global solution, the blowup of the solution (see [–] and the references therein). WhenM is not a constant function, equation (.)without the damping and source terms is often called a Kirchhoff-type wave equation; it has first been introduced by Kirchhoff [] in order to describe the nonlinear vibrations of an elastic string. When...

متن کامل

Oscillator with Strong Quadratic Damping Force

Oscillations of a system with strong quadratic damping are considered. For the exact analytical form of the energy-displacement function the explicit form of the maximal amplitudes of vibration are obtained by introducing the Lambert W function. Comparing the neighbor maximal amplitudes and the corresponding energies the conclusions about the energy dissipation is given. The approximate solutio...

متن کامل

Limiting behavior of global attractors for singularly perturbed beam equations with strong damping

The limiting behavior of global attractors Aε for singularly perturbed beam equations ε ∂u ∂t2 + εδ ∂u ∂t + A ∂u ∂t + αAu+ g(‖u‖ 1/4)A u = 0 is investigated. It is shown that for any neighborhood U of A0 the set Aε is included in U for ε small.

متن کامل

Existence of Exponential Attractors for the Plate Equations with Strong Damping

We show the existence of (H2 0 (Ω)×L2(Ω), H2 0 (Ω)×H2 0 (Ω))-global attractors for plate equations with critical nonlinearity when g ∈ H−2(Ω). Furthermore we prove that for each fixed T > 0, there is an (H2 0 (Ω) × L2(Ω), H2 0 (Ω) × H2 0 (Ω))T -exponential attractor for all g ∈ L2(Ω), which attracts any H2 0 (Ω)×L2(Ω)-bounded set under the stronger H2(Ω)×H2(Ω)-norm for all t ≥ T .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Evolution Equations

سال: 2016

ISSN: 1424-3199,1424-3202

DOI: 10.1007/s00028-015-0308-0