Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
نویسندگان
چکیده
منابع مشابه
Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-stabilized Zirconia
Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much sl...
متن کاملEfficient kinetic Monte Carlo simulation
This paper concerns Kinetic Monte Carlo (KMC) algorithms that have a singleevent execution time independent of the system size. Two methods are presented— one that combines the use of inverted-list data structures with rejection Monte Carlo and a second that combines inverted lists with the Marsaglia-Norman-Cannon algorithm. The resulting algorithms apply to models with rates that are determine...
متن کاملKinetic Monte Carlo simulation of titin unfolding
Recently, it has become possible to unfold a single protein molecule titin, by pulling it with an atomic-force-microscope tip. In this paper, we propose and study a stochastic kinetic model of this unfolding process. Our model assumes that each immunoglobulin domain of titin is held together by six hydrogen bonds. The external force pulls on these bonds and lowers the energy barrier that preven...
متن کاملThe Lattice Kinetic Monte Carlo Simulation of Atomic Diffusion and Structural Transition for Gold
For the kinetic simulation of metal nanoparticles, we developed a self-consistent coordination-averaged energies for Au atoms based on energy properties of gold bulk phases. The energy barrier of the atom pairing change is proposed and holds for the microscopic reversibility principle. By applying the lattice kinetic Monte Carlo simulation on gold films, we found that the atomic diffusion of Au...
متن کاملAn Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene
The Li⁺ diffusion coefficients in Li⁺-adsorbed graphene systems were determined by combining first-principle calculations based on density functional theory with Kinetic Monte Carlo simulations. The calculated results indicate that the interactions between Li ions have a very important influence on lithium diffusion. Based on energy barriers directly obtained from first-principle calculations f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MRS Advances
سال: 2016
ISSN: 2059-8521
DOI: 10.1557/adv.2015.54