Khovanov homology, sutured Floer homology and annular links

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Khovanov Homology, Sutured Floer Homology, and Annular Links J. Elisenda Grigsby and Stephan Wehrli

In [28], Lawrence Roberts, extending the work of Ozsváth and Szabó in [23], showed how to associate to a link, L, in the complement of a fixed unknot, B ⊂ S, a spectral sequence whose E term is the Khovanov homology of a link in a thickened annulus defined in [2], and whose E term is the knot Floer homology of the preimage of B inside the double-branched cover of L. In [6], we extended [23] in ...

متن کامل

The sutured Floer homology polytope

Using sutured Floer homology (in short SFH) I will define a polytope inside the second relative cohomology group of a sutured manifold. This is a generalization of the dual Thurston norm polytope of a link-complement studied by Ozsvath and Szabo using link Floer homology. The polytope is maximal dimensional under certain conditions. Moreover, surface decompositions correspond to the faces of th...

متن کامل

Monopole Floer Homology, Link Surgery, and Odd Khovanov Homology

Monopole Floer Homology, Link Surgery, and Odd Khovanov Homology Jonathan Michael Bloom We construct a link surgery spectral sequence for all versions of monopole Floer homology with mod 2 coefficients, generalizing the exact triangle. The spectral sequence begins with the monopole Floer homology of a hypercube of surgeries on a 3-manifold Y , and converges to the monopole Floer homology of Y i...

متن کامل

The Decategorification of Sutured Floer Homology

We define a torsion invariant for balanced sutured manifolds and show that it agrees with the Euler characteristic of sutured Floer homology. The torsion is easily computed and shares many properties of the usual Alexander polynomial.

متن کامل

Homological actions on sutured Floer homology

We define the action of the homology group H1(M,∂M) on the sutured Floer homology SFH(M,γ). It turns out that the contact invariant EH(M,γ, ξ) is usually sent to zero by this action. This fact allows us to refine an earlier result proved by Ghiggini and the author. As a corollary, we classify knots in #(S × S) which have simple knot Floer homology groups: They are essentially the Borromean knots.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2010

ISSN: 1472-2739,1472-2747

DOI: 10.2140/agt.2010.10.2009