Kernel estimates for nonautonomous Kolmogorov equations
نویسندگان
چکیده
منابع مشابه
Nonautonomous Kolmogorov Parabolic Equations with Unbounded Coefficients
We study a class of elliptic operators A with unbounded coefficients defined in I × R for some unbounded interval I ⊂ R. We prove that, for any s ∈ I, the Cauchy problem u(s, ·) = f ∈ Cb(R ) for the parabolic equation Dtu = Au admits a unique bounded classical solution u. This allows to associate an evolution family {G(t, s)} with A, in a natural way. We study the main properties of this evolut...
متن کاملStrong Convergence of Solutions to Nonautonomous Kolmogorov Equations
We study a class of nonautonomous, linear, parabolic equations with unbounded coefficients on Rd which admit an evolution system of measures. It is shown that the solutions of these equations converge to constant functions as t → +∞. We further establish the uniqueness of the tight evolution system of measures and treat the case of converging coefficients.
متن کاملHeteroclinic Solutions for Nonautonomous EFK Equations
and Applied Analysis 3 Lemma 3. Let q ∈ E. Then for any V > 0, r < s ∈ R such that q(t) ∉ B ε (V) and |q(t)| ⩽ V for any t ∈ [r, s], I (q) ⩾ √2σ ε,V q (r) − q (s) . (16) In particular, if σ ε > 0, then for any r < s ∈ R such that q(t) ∉ B ε (V) for any t ∈ [r, s], I (q) ⩾ √2σ ε q (r) − q (s) . (17) Proof. Denote l = |q(r) − q(s)| and τ = |r − s|. Then l = ∫ s r q (t)...
متن کاملCarrying simplices in nonautonomous and random competitive Kolmogorov systems
The purpose of this paper is to investigate the asymptotic behavior of positive solutions of nonautonomous and random competitive Kolmogorov systems via the skew-product flows approach. It is shown that there exists an unordered carrying simplex which attracts all nontrivial positive orbits of the skewproduct flow associated with a nonautonomous (random) competitive Kolmogorov system. © 2008 El...
متن کاملMaximal regularity for nonautonomous evolution equations
We derive sufficient conditions, perturbation theorems in particular, for nonautonomous evolution equations to possess the property of maximal Lp regularity. 1991 Mathematics Subject Classification. 35K90, 47D06.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2016
ISSN: 0001-8708
DOI: 10.1016/j.aim.2015.09.029