Kellogg's iterations for general complex matrix

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functions Preserving Matrix Groups and Iterations for the Matrix Square Root

For which functions f does A ∈ G ⇒ f(A) ∈ G when G is the matrix automorphism group associated with a bilinear or sesquilinear form? For example, if A is symplectic when is f(A) symplectic? We show that group structure is preserved precisely when f(A) = f(A) for bilinear forms and when f(A) = f(A) for sesquilinear forms. Meromorphic functions that satisfy each of these conditions are characteri...

متن کامل

ON CONEIGENVALUES OF A COMPLEX SQUARE MATRIX

In this paper, we show that a matrix A in Mn(C) that has n coneigenvectors, where coneigenvaluesassociated with them are distinct, is condiagonalizable. And also show that if allconeigenvalues of conjugate-normal matrix A be real, then it is symmetric.  

متن کامل

The Kreiss Matrix Theorem on a General Complex Domain

Let A be a bounded linear operator in a Hilbert space H with spectrum Λ(A). The Kreiss matrix theorem gives bounds based on the resolvent norm ‖(zI−A)−1‖ for ‖An‖ if Λ(A) is in the unit disk or for ‖etA‖ if Λ(A) is in the left half-plane. We generalize these results to a complex domain Ω, giving bounds for ‖Fn(A)‖ if Λ(A) ⊂ Ω, where Fn denotes the nth Faber polynomial associated with Ω. One of ...

متن کامل

Matrix Representations of Nonlinear Equation Iterations—Application to Parallel Computation

A matrix representation of iterative methods is presented which includes almost all those based on polynomial methods. A simple lemma and corollaries are established which show that the order of convergence of the iteration is the spectral radius of the matrix representation. A number of old and new methods, particularly those adapted to parallel computation, are analyzed using this representat...

متن کامل

From Potential Theory to Matrix Iterations in Six Steps

The theory of the convergence of Krylov subspace iterations for linear systems of equations (conjugate gradients, biconjugate gradients, GMRES, QMR, Bi-CGSTAB, and so on) is reviewed. For a computation of this kind, an estimated asymptotic convergence factor ρ ≤ 1 can be derived by solving a problem of potential theory or conformal mapping. Six approximations are involved in relating the actual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applications of Mathematics

سال: 1974

ISSN: 0862-7940,1572-9109

DOI: 10.21136/am.1974.103550