KCC2 Gates Activity-Driven AMPA Receptor Traffic through Cofilin Phosphorylation
نویسندگان
چکیده
منابع مشابه
PKC anchoring to GluR4 AMPA receptor subunit modulates PKC-driven receptor phosphorylation and surface expression.
Changes in the synaptic content of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors lead to synaptic efficacy modifications, involved in synaptic plasticity mechanisms believed to underlie learning and memory formation. Early in development, GluR4 is highly expressed in the hippocampus, and GluR4-containing AMPA receptors are inserted into synapses. During sy...
متن کاملAMPA receptor phosphorylation during synaptic plasticity.
A widely studied example of vertebrate plasticity is LTP (long-term potentiation), the persistent synaptic enhancement that follows a brief period of coinciding pre- and post-synaptic activity. During LTP, different kinases, including CaMKII (calcium/calmodulin-dependent protein kinase II) and protein kinase A, become activated and play critical roles in induction and maintenance of enhanced tr...
متن کاملSynaptic activity regulates AMPA receptor trafficking through different recycling pathways
Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the G...
متن کاملSynGAP regulates steady-state and activity-dependent phosphorylation of cofilin.
SynGAP, a prominent Ras/Rap GTPase-activating protein in the postsynaptic density, regulates the timing of spine formation and trafficking of glutamate receptors in cultured neurons. However, the molecular mechanisms by which it does this are unknown. Here, we show that synGAP is a key regulator of spine morphology in adult mice. Heterozygous deletion of synGAP was sufficient to cause an excess...
متن کاملGluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.
NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neuroscience
سال: 2015
ISSN: 0270-6474,1529-2401
DOI: 10.1523/jneurosci.1735-15.2015