K-Fold Cross Validation for Selection of Cardiovascular Disease Diagnosis Features by Applying Rule-Based Datamining
نویسندگان
چکیده
منابع مشابه
The 'K' in K-fold Cross Validation
The K-fold Cross Validation (KCV) technique is one of the most used approaches by practitioners for model selection and error estimation of classifiers. The KCV consists in splitting a dataset into k subsets; then, iteratively, some of them are used to learn the model, while the others are exploited to assess its performance. However, in spite of the KCV success, only practical rule-of-thumb me...
متن کاملA K-fold Averaging Cross-validation Procedure.
Cross-validation type of methods have been widely used to facilitate model estimation and variable selection. In this work, we suggest a new K-fold cross validation procedure to select a candidate 'optimal' model from each hold-out fold and average the K candidate 'optimal' models to obtain the ultimate model. Due to the averaging effect, the variance of the proposed estimates can be significan...
متن کاملEstimators of Variance for K-Fold Cross-Validation
1 Motivations In machine learning, the standard measure of accuracy for models is the prediction error (PE), i.e. the expected loss on future examples. We consider here the i.i.d. regression or classification setups, where future examples are assumed to be independently sampled from the distribution that generated the training set. When the data distribution is unknown, PE cannot be computed. T...
متن کاملLong-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)
Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...
متن کاملAssociation rule-based feature selection method for Alzheimer's disease diagnosis
A fundamental challenge that remains unsolved in the neuroimage field is the small sample size problem. Feature selection and extraction, which are based on a limited training set, are likely to display poor generalization performance on new datasets. To address this challenge, a novel voxel selection method based on association rule (AR) mining is proposed for designing a computer aided diagno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal and Image Processing Letters
سال: 2019
ISSN: 2714-6677,2714-6669
DOI: 10.31763/simple.v1i2.3