Just excellence and very excellence in graphs with respect to strong domination
نویسندگان
چکیده
منابع مشابه
Critical graphs with respect to total domination and connected domination
A graph G is said to be k-γt-critical if the total domination number γt(G) = k and γt(G + uv) < k for every uv / ∈ E(G). A k-γc-critical graph G is a graph with the connected domination number γc(G) = k and γc(G + uv) < k for every uv / ∈ E(G). Further, a k-tvc graph is a graph with γt(G) = k and γt(G− v) < k for all v ∈ V (G), where v is not a support vertex (i.e. all neighbors of v have degre...
متن کاملa comparison of teachers and supervisors, with respect to teacher efficacy and reflection
supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...
15 صفحه اولPerfect graphs of strong domination and independent strong domination
Let γ(G), i(G), γS(G) and iS(G) denote the domination number, the independent domination number, the strong domination number and the independent strong domination number of a graph G, respectively. A graph G is called γi-perfect (domination perfect) if γ(H) = i(H), for every induced subgraph H of G. The classes of γγS-perfect, γSiS-perfect, iiS-perfect and γiS-perfect graphs are defined analog...
متن کاملEnsuring excellence in centers of excellence programs.
Studies have found associations between better outcomes and a variety of structural and process criteria that help explain the wide outcome variations that occur across hospitals. In response, Centers of Excellence programs have been developed by multiple third parties. Despite this, programs have yielded disappointing results and can have unintended consequences. To outweigh potential harms, o...
متن کاملDomination critical graphs with respect to relative complements
Let G be a spanning subgraph of Ks,s and let H be the complement of G relative to Ks,s; that is, Ks,s = GtJ)H is a factorization of Ks,s' The graph G is ,,(-critical relative to Ks,s if ,(G) = , and "(( G + e) = , 1 for all e E E(H), where ,(G) denotes the domination number of G. We investigate ,,(-critical graphs for small values of "(. The 2-critical graphs and 3-critical graphs are character...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tamkang Journal of Mathematics
سال: 2007
ISSN: 2073-9826,0049-2930
DOI: 10.5556/j.tkjm.38.2007.87