Jordan Canonical Forms of Riordan Arrays

نویسندگان

چکیده

Abstract We consider the possible Jordan canonical forms of Riordan arrays. prove that there are, in fact, only two such forms. Moreover, transition matrix is group case when given array has one some three specific

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lecture 4: Jordan Canonical Forms

This lecture introduces the Jordan canonical form of a matrix — we prove that every square matrix is equivalent to a (essentially) unique Jordan matrix and we give a method to derive the latter. We also introduce the notion of minimal polynomial and we point out how to obtain it from the Jordan canonical form. Finally, we make an encounter with companion matrices. 1 Jordan form and an applicati...

متن کامل

Rational Canonical and Jordan Forms

Definition 2.1. Suppose p1, . . . , pk are polynomials in F[x] which are not all 0. Set I = 〈p1, . . . , pk〉. Let d denote the monic generator of I. We call d the greatest common divisor of the pi and write d = gcd(p1, . . . , pk). If d = 1, we say that the polynomials p1, . . . , pk is relatively prime. Note that, by definition, there exists polynomials q1, . . . , qk ∈ F[x] such that d = p1q1...

متن کامل

NUROP Congress Paper Jordan Canonical Forms of Linear Operators

Any linear transformation can be represented by its matrix representation. In an ideal situation, all linear operators can be represented by a diagonal matrix. However, in the real world, there exist many linear operators that are not diagonalizable. This gives rise to the need for developing a system to provide a beautiful matrix representation for a linear operator that is not diagonalizable....

متن کامل

Generalized Riordan arrays

In this paper, we generalize the concept of Riordan array. A generalized Riordan array with respect to cn is an infinite, lower triangular array determined by the pair (g(t), f(t)) and has the generic element dn,k = [t/cn]g(t)(f(t))/ck, where cn is a fixed sequence of non-zero constants with c0 = 1. We demonstrate that the generalized Riordan arrays have similar properties to those of the class...

متن کامل

Complementary Riordan arrays

Recently, the concept of the complementary array of a Riordan array (or recursive matrix) has been introduced. Here we generalize the concept and distinguish between dual and complementary arrays. We show a number of properties of these arrays, how they are computed and their relation with inversion. Finally, we use them to find explicit formulas for the elements of many recursive matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Mathematics

سال: 2021

ISSN: ['1420-9012', '1422-6383']

DOI: https://doi.org/10.1007/s00025-021-01405-6