Jacobi structures and Spencer operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E1(M )-Dirac structures and Jacobi structures

Using E1(M)-Dirac structures, a notion introduced by A. Wade, we obtain conditions under which a submanifold of a Jacobi manifold has an induced Jacobi structure, generalizing the result obtained by Courant for Dirac structures and submanifolds of a Poisson manifold.

متن کامل

Probabilistic Averages of Jacobi Operators

I study the Lyapunov exponent and the integrated density of states for general Jacobi operators. The main result is that questions about these can be reduced to questions about ergodic Jacobi operators. I use this to show that for finite gap Jacobi operators, regularity implies that they are in the Cesàro–Nevai class, proving a conjecture of Barry Simon. Furthermore, I use this to study Jacobi ...

متن کامل

Spectral Deformations of Jacobi Operators

We extend recent work concerning isospectral deformations for one-dimensional Schrödinger operators to the case of Jacobi operators. We provide a complete spectral characterization of a new method that constructs isospectral deformations of a given Jacobi operator (Hu)(n) = a(n)u(n + 1) + a(n − 1)u(n − 1) − b(n)u(n). Our technique is connected to Dirichlet data, that is, the spectrum of the ope...

متن کامل

Renormalization of Random Jacobi Operators

We construct a Cantor set ̂ of limit-periodic Jacobi operators having the spectrum on the Julia set J of the quadratic map z ι-> z + E for large negative real numbers E. The density of states of each of these operators is equal to the unique equilibrium measure μ on J. The Jacobi operators in $ are defined over the von Neumann-Kakutani system, a group translation on the compact topological group...

متن کامل

Commutation Methods for Jacobi Operators

We offer two methods of inserting eigenvalues into spectral gaps of a given background Jacobi operator: The single commutation method which introduces eigenvalues into the lowest spectral gap of a given semi-bounded background Jacobi operator and the double commutation method which inserts eigenvalues into arbitrary spectral gaps. Moreover, we prove unitary equivalence of the commuted operators...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2015

ISSN: 0021-7824

DOI: 10.1016/j.matpur.2014.04.012