Jacobi polynomials as generalized Faber polynomials
نویسندگان
چکیده
منابع مشابه
A Family of Generalized Jacobi Polynomials
The family of orthogonal polynomials corresponding to a generalized Jacobi weight function was considered by Wheeler and Gautschi who derived recurrence relations, both for the related Chebyshev moments and for the associated orthogonal polynomials. We obtain an explicit representation of these polynomials, from which the recurrence relation can be derived.
متن کاملGeneralized Jacobi polynomials/functions and their applications
We introduce a family of generalized Jacobi polynomials/functions with indexes α,β ∈ R which are mutually orthogonal with respect to the corresponding Jacobi weights and which inherit selected important properties of the classical Jacobi polynomials. We establish their basic approximation properties in suitably weighted Sobolev spaces. As an example of their applications, we show that the gener...
متن کاملLattice Paths and Faber Polynomials
The rth Faber polynomial of the Laurent series f(t) = t + f0 + f1/t + f2/t + · · · is the unique polynomial Fr(u) of degree r in u such that Fr(f) = tr + negative powers of t. We apply Faber polynomials, which were originally used to study univalent functions, to lattice path enumeration.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1990
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-1990-0965745-1