Jacobi polynomials as generalized Faber polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Family of Generalized Jacobi Polynomials

The family of orthogonal polynomials corresponding to a generalized Jacobi weight function was considered by Wheeler and Gautschi who derived recurrence relations, both for the related Chebyshev moments and for the associated orthogonal polynomials. We obtain an explicit representation of these polynomials, from which the recurrence relation can be derived.

متن کامل

Generalized Jacobi polynomials/functions and their applications

We introduce a family of generalized Jacobi polynomials/functions with indexes α,β ∈ R which are mutually orthogonal with respect to the corresponding Jacobi weights and which inherit selected important properties of the classical Jacobi polynomials. We establish their basic approximation properties in suitably weighted Sobolev spaces. As an example of their applications, we show that the gener...

متن کامل

Lattice Paths and Faber Polynomials

The rth Faber polynomial of the Laurent series f(t) = t + f0 + f1/t + f2/t + · · · is the unique polynomial Fr(u) of degree r in u such that Fr(f) = tr + negative powers of t. We apply Faber polynomials, which were originally used to study univalent functions, to lattice path enumeration.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1990

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-1990-0965745-1