Jacobi forms that characterize paramodular forms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packet structure and paramodular forms

We explore the consequences of the structure of the discrete automorphic spectrum of the split orthogonal group SO(5) for holomorphic Siegel modular forms of degree 2. In particular, the combination of the local and global packet structure with the local paramodular newform theory for GSp(4) leads to a strong multiplicity one theorem for paramodular cusp forms.

متن کامل

On Modular Forms for the Paramodular Group

Contents 1 Definitions 3 2 Linear independence at different levels 6 3 The level raising operators 8 4 Oldforms and newforms 13 5 Saito–Kurokawa liftings 16 6 Two theorems 23 Appendix 26 References 28 Introduction Let F be a p–adic field, and let G be the algebraic F –group GSp(4). In our paper [RS] we presented a conjectural theory of local newforms for irreducible, admissible, generic represe...

متن کامل

Non-vanishing of Fundamental Fourier Coefficients of Paramodular Forms

of fundamental Fourier coefficients, which plays an important role in the theory of Bessel models and L-functions. For instance, in certain cases, non-vanishing of a fundamental Fourier coefficient of a cuspidal Siegel modular form F is equivalent to existence of a global Bessel model of fundamental type (cf. [16, Lemma 4.1]) and is used to show analytic properties and special value results for...

متن کامل

Jacobi Forms over Number Fields

OF THE DISSERTATION Jacobi Forms over Number Fields by Howard Skogman Doctor of Philosophy in Mathematics University of California San Diego, 1999 Professor Harold Stark, Chair We de ne Jacobi Forms over an algebraic number eld K and construct examples by rst embedding the group and the space into the symplectic group and the symplectic upper half space respectively. We then create symplectic m...

متن کامل

On Congruences of Jacobi Forms

We consider congruences and filtrations of Jacobi forms. More specifically, we extend Tate’s theory of theta cycles to Jacobi forms, which allows us to prove a criterion for an analog of Atkin’s U-operator applied to a Jacobi form to be nonzero modulo a prime.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg

سال: 2013

ISSN: 0025-5858,1865-8784

DOI: 10.1007/s12188-013-0078-y