Jacobi equations using a variational principle

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Jacobi-Maupertuis Principle in Variational Integrators

In this paper, we develop a hybrid variational integrator based on the Jacobi-Maupertuis Principle of Least Action. The Jacobi-Maupertuis principle states that for a mechanical system with total energy E and potential energy V{q), the curve traced out by the system on a constant energy surface minimizes the action given by / y^2{E — V{q))ds where ds is the line element on the constant energy su...

متن کامل

Finite-element discretization of static Hamilton-Jacobi equations based on a local variational principle

We propose a linear finite-element discretization of Dirichlet problems for static Hamilton–Jacobi equations on unstructured triangulations. The discretization is based on simplified localized Dirichlet problems that are solved by a local variational principle. It generalizes several approaches known in the literature and allows for a simple and transparent convergence theory. In this paper the...

متن کامل

A variational principle for nonlinear transport equations

We verify -after appropriate modificationsan old conjecture of Brezis-Ekeland [3] concerning the feasibility of a global and variational approach to the problems of existence and uniqueness of solutions of non-linear transport equations, which do not normally fit in an Euler-Lagrange framework. Our method is based on a concept of “anti-self duality” that seems to be inherent in many problems, i...

متن کامل

$(varphi_1, varphi_2)$-variational principle

In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm,  such that $f + g $ attains its strong minimum on $X. $ This result extends some of the  well-known varitional principles as that of Ekeland [On the variational principle,  J. Ma...

متن کامل

A Comparison Principle for Hamilton-jacobi Equations with Discontinuous Hamiltonians

We show a comparison principle for viscosity superand subsolutions to Hamilton-Jacobi equations with discontinuous Hamiltonians. The key point is that the Hamiltonian depends upon u and has a special structure. The supersolution must enjoy some additional regularity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters A

سال: 2000

ISSN: 0375-9601

DOI: 10.1016/s0375-9601(00)00574-0