Iterative Reconstrained Low-Rank Representation via Weighted Nonconvex Regularizer
نویسندگان
چکیده
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملExact Low-rank Matrix Recovery via Nonconvex Mp-Minimization
The low-rank matrix recovery (LMR) arises in many fields such as signal and image processing, statistics, computer vision, system identification and control, and it is NP-hard. It is known that under some restricted isometry property (RIP) conditions we can obtain the exact low-rank matrix solution by solving its convex relaxation, the nuclear norm minimization. In this paper, we consider the n...
متن کاملNonconvex Low Rank Matrix Factorization via Inexact First Order Oracle
We study the low rank matrix factorization problem via nonconvex optimization. Compared with the convex relaxation approach, nonconvex optimization exhibits superior empirical performance for large scale low rank matrix estimation. However, the understanding of its theoretical guarantees is limited. To bridge this gap, we exploit the notion of inexact first order oracle, which naturally appears...
متن کاملDropout as a Low-Rank Regularizer for Matrix Factorization
Regularization for matrix factorization (MF) and approximation problems has been carried out in many different ways. Due to its popularity in deep learning, dropout has been applied also for this class of problems. Despite its solid empirical performance, the theoretical properties of dropout as a regularizer remain quite elusive for this class of problems. In this paper, we present a theoretic...
متن کاملWeighted Low-Rank Approximations
We study the common problem of approximating a target matrix with a matrix of lower rank. We provide a simple and efficient (EM) algorithm for solving weighted low-rank approximation problems, which, unlike their unweighted version, do not admit a closedform solution in general. We analyze, in addition, the nature of locally optimal solutions that arise in this context, demonstrate the utility ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2870371