Iterative method for Kirchhoff-Carrier type equations and its applications

نویسندگان

چکیده

This is a new version of our previous work. In this version, we fill gap included in the original proof Theorem 1.1 paper entitled "An iterative method for Kirchhoff type equations and its applications".

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative blind deconvolution method and its applications

The process of convolution arises frequently in optics,1 and if one of the functions f or g is known, methods such as Weiner filtering 2 and iterative restoration 3 can recover the other function. The problem of deconvolution becomes more difficult if neither of the functions f(x) and g(x) is known, i.e., only the output signal, c(x), is available. The problem is now termed blind deconvolution....

متن کامل

A New Iterative Method For Solving Fuzzy Integral ‎Equations

In the present work, by applying known Bernstein polynomials and their advantageous properties, we establish an efficient iterative algorithm to approximate the numerical solution of fuzzy Fredholm integral equations of the second kind. The convergence of the proposed method is given and the numerical examples illustrate that the proposed iterative algorithm are ‎valid.‎

متن کامل

Positive solutions for asymptotically periodic Kirchhoff-type equations with critical growth

In this paper‎, ‎we consider the following Kirchhoff-type equations‎: ‎$-‎left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$u(x)>0‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$uin H^{1}(mathbb{R}^{3})‎ ,‎$ ‎ ‎‎‎where $a,b>0$ are constants and $lambda$ is a positive parameter‎. ‎The aim of this paper is to study the existence of positive ...

متن کامل

EIGENVALUE PROBLEMS FOR p(x)-KIRCHHOFF TYPE EQUATIONS

In this article, we study the nonlocal p(x)-Laplacian problem

متن کامل

A Fast and Accurate Expansion-Iterative Method for Solving Second Kind Volterra Integral Equations

This article proposes a fast and accurate expansion-iterative method for solving second kind linear Volterra integral equations. The method is based on a special representation of vector forms of triangular functions (TFs) and their operational matrix of integration. By using this approach, solving the integral equation reduces to solve a recurrence relation. The approximate solution of integra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2021

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2020.08.033