Isoperimetric inequalities and the Friedlander-Milnor conjecture

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoperimetric Inequalities and the Friedlander–milnor Conjecture

We prove that Friedlander’s generalized isomorphism conjecture on the cohomology of algebraic groups, and hence Milnor’s conjecture on the cohomology of the complex algebraic Lie group G(C) made discrete, are equivalent to the existence of an isoperimetric inequality in the homological bar complex of G(F ), where F is the algebraic closure of a finite field.

متن کامل

The Friedlander – Milnor Conjecture

Conjecture 32.1 is easily seen to be true for a torus (i.e., G G r m for some r 0), but even the simplest non-trivial case (that of G SL2 ) remains inaccessible. Guido and I published 5 papers together, all in some sense connected with this conjecture. We used the integral form GZ of a complex reductive algebraic group (which is a group scheme over Spec Z ) in order to form the group G(F) of po...

متن کامل

The Milnor Conjecture

3 Motivic cohomology and algebraic cobordisms. 21 3.1 A topological lemma. . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Homotopy categories of algebraic varieties . . . . . . . . . . . 25 3.3 Eilenberg-MacLane spectra and motivic cohomology. . . . . . . 30 3.4 Topological realization functor. . . . . . . . . . . . . . . . . . . 33 3.5 Algebraic cobordisms. . . . . . . . . . . . . . . . ...

متن کامل

Rasmussen invariant and Milnor conjecture

These notes were written for a serie of lectures on the Rasmussen invariant and the Milnor conjecture, given at Winter Braids IV in February 2014. Introduction A torus knot is a knot in R3 which can be drawn without crossing on the surface of a trivially embedded solid torus. Up to mirror image, non trivial torus knots are classified by pairs {p, q} of coprime non negative integers. By conventi...

متن کامل

The Friedlander-Gordon-Miller conjecture is true

We complete the proof of the Friedlander, Gordon and Miller Conjecture that every finite abelian group whose Sylow 2-subgroup either is trivial or both non-trivial and non-cyclic is R-sequenceable. This settles a question of Ringel for abelian groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)

سال: 2005

ISSN: 0075-4102,1435-5345

DOI: 10.1515/crll.2005.2005.587.27