Isomorphisms between spaces of Lipschitz functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isomorphisms between Spaces of Vector-valued Continuous Functions

A theorem due to Milutin [12] (see also [13]) asserts that for any two uncountable compact metric spaces Qt and Q2> t n e spaces of continuous real-valued functions C ^ ) and C(Q2) are linearly isomorphic. It immediately follows from consideration of tensor products that if X is any Banach space then QQ^X) and C(Q2;X) are isomorphic. The purpose of this paper is to show that this conclusion is ...

متن کامل

Spaces of Lipschitz Functions on Metric Spaces

In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.

متن کامل

Lipschitz Functions on Topometric Spaces

We study functions on topometric spaces which are both (metrically) Lipschitz and (topologically) continuous, using them in contexts where, in classical topology, ordinary continuous functions are used. We study the relations of such functions with topometric versions of classical separation axioms, namely, normality and complete regularity, as well as with completions of topometric spaces. We ...

متن کامل

Infinitesimally Lipschitz Functions on Metric Spaces

For a metric space X, we study the space D∞(X) of bounded functions on X whose infinitesimal Lipschitz constant is uniformly bounded. D ∞(X) is compared with the space LIP∞(X) of bounded Lipschitz functions on X, in terms of different properties regarding the geometry of X. We also obtain a Banach-Stone theorem in this context. In the case of a metric measure space, we also compare D∞(X) with t...

متن کامل

Certain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces

We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2019

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2019.02.003