Isomorphism universal varieties of Heyting algebras
نویسندگان
چکیده
منابع مشابه
Locally finite varieties of Heyting algebras
We show that for a variety V of Heyting algebras the following conditions are equivalent: (1) V is locally finite; (2) the V-coproduct of any two finite V-algebras is finite; (3) either V coincides with the variety of Boolean algebras or finite V-copowers of the three element chain 3 ∈ V are finite. We also show that a variety V of Heyting algebras is generated by its finite members if, and onl...
متن کاملModel completion of varieties of co-Heyting algebras
It is known that exactly eight varieties of Heyting algebras have a modelcompletion, but no concrete axiomatisation of these model-completions were known by now except for the trivial variety (reduced to the one-point algebra) and the variety of Boolean algebras. For each of the six remaining varieties we introduce two axioms and show that 1) these axioms are satisfied by all the algebras in th...
متن کاملOptimal natural dualities for varieties of Heyting algebras
The techniques of natural duality theory are applied to certain finitely generated varieties of Heyting algebras to obtain optimal dualities for these varieties, and thereby to address algebraic questions about them. In particular, a complete characterisation is given of the endodualisable finite subdirectly irreducible Heyting algebras. The procedures involved rely heavily on Priestley duality...
متن کاملFunctor category dualities for varieties of Heyting algebras
Let A be a 4nitely generated variety of Heyting algebras and let SI(A) be the class of subdirectly irreducible algebras in A. We prove that A is dually equivalent to a category of functors from SI(A) into the category of Boolean spaces. The main tool is the theory of multisorted natural dualities. c © 2002 Elsevier Science B.V. All rights reserved. MSC: Primary: 06D20; 06D50; secondary: 08C05; ...
متن کاملThe Isomorphism Problem for Universal Enveloping Algebras of Lie Algebras
Let L be a Lie algebra with universal enveloping algebra U(L). We prove that if H is another Lie algebra with the property that U(L) ∼= U(H) then certain invariants of L are inherited by H. For example, we prove that if L is nilpotent then H is nilpotent with the same class as L. We also prove that if L is nilpotent of class at most two then L is isomorphic to H.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1990
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-1990-0955486-9