Isometries between $B\sp{\ast} $-algebras

نویسندگان

چکیده

منابع مشابه

Isometries Between Matrix Algebras

As an attempt to understand linear isometries between C∗-algebras without the surjectivity assumption, we study linear isometries between matrix algebras. Denote by Mm the algebra of m×m complex matrices. If k ≥ n and φ : Mn → Mk has the form X 7→ U [X ⊕ f(X)]V or X 7→ U [X t ⊕ f(X)]V for some unitary U, V ∈ Mk and contractive linear map f : Mn → Mk, then ‖φ(X)‖ = ‖X‖ for all X ∈ Mn. We prove t...

متن کامل

Surjective Real-Linear Uniform Isometries Between Complex Function Algebras

In this paper, we first give a description of a surjective unit-preserving real-linear uniform isometry $ T : A longrightarrow B$,  where $ A $ and $ B $ are complex function spaces on compact Hausdorff spaces $ X $ and $ Y $, respectively, whenever ${rm ER}left (A, Xright ) = {rm Ch}left (A, Xright )$ and ${rm ER}left (B, Yright ) = {rm Ch}left (B, Yright )$. Next, we give a description of $ T...

متن کامل

Isometries between Groups of Invertible Elements in Banach Algebras

We show that if T is an isometry (as metric spaces) from an open subgroup of the group of the invertible elements in a unital semisimple commutative Banach algebra onto an open subgroup of the group of the invertible elements in a unital Banach algebra, then T (1)T is an isometrical group isomorphism. In particular, T (1)T is extended to an isometrical real algebra isomorphism from A onto B.

متن کامل

- Algebras Generated by Partial Isometries

We associate to each discrete partial dynamical system a universal C-algebra generated by partial isometries satisfying relations given by a Boolean algebra connected to the discrete partial dynamical system in question. We show that for symbolic dynamical systems like one-sided and two-sided shift spaces and topological Markov chains with an arbitrary state space the C-algebras usually associa...

متن کامل

Codimension 1 Linear Isometries on Function Algebras

Let A be a function algebra on a locally compact Hausdorff space. A linear isometry T : A −→ A is said to be of codimension 1 if the range of T has codimension 1 in A. In this paper, we provide and study a classification of codimension 1 linear isometries on function algebras in general and on Douglas algebras in particular.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1969

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1969-0246137-4