Irreducibility of spatial graphs
نویسندگان
چکیده
منابع مشابه
Clique Irreducibility and Clique Vertex Irreducibility of Graphs
A graphs G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and is clique reducible if it is not clique irreducible. A graph G is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G and clique vertex reducible if it is not clique vertex irreducible. The clique vertex irred...
متن کاملIrreducibility of spatial graphs Dedicated to Professor Shin’ichi Suzuki for his 60th birthday
A graph embedded in the 3-sphere is called irreducible if it is non-splittable and for any 2-sphere embedded in the 3-sphere that intersects the graph at one point the graph is contained in one of the 3-balls bounded by the 2-sphere. We show that irreducibility is preserved under certain deformations of embedded graphs. We show that certain embedded graphs are irreducible. 2000 Mathematics Subj...
متن کاملClique irreducibility of some iterative classes of graphs
In this paper, two notions, the clique irreducibility and clique vertex irreducibility are discussed. A graph G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and it is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G. It is proved that L(G) is clique irreducible if a...
متن کاملIrreducibility of Hypersurfaces
Given a polynomial P in several variables over an algebraically closed field, we show that except in some special cases that we fully describe, if one coefficient is allowed to vary, then the polynomial is irreducible for all but at most deg(P ) − 1 values of the coefficient. We more generally handle the situation where several specified coefficients vary.
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Knot Theory and Its Ramifications
سال: 2002
ISSN: 0218-2165,1793-6527
DOI: 10.1142/s0218216502001512