Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii
نویسندگان
چکیده
منابع مشابه
Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii.
The marine nitrogen fixing microorganisms (diazotrophs) are a major source of nitrogen to open ocean ecosystems and are predicted to be limited by iron in most marine environments. Here we use global and targeted proteomic analyses on a key unicellular marine diazotroph Crocosphaera watsonii to reveal large scale diel changes in its proteome, including substantial variations in concentrations o...
متن کاملArsenate Resistance in the Unicellular Marine Diazotroph Crocosphaera watsonii
The toxic arsenate ion can behave as a phosphate analog, and this can result in arsenate toxicity especially in areas with elevated arsenate to phosphate ratios like the surface waters of the ocean gyres. In these systems, cellular arsenate resistance strategies would allow phytoplankton to ameliorate the effects of arsenate transport into the cell. Despite the potential coupling between arsena...
متن کاملPhosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii.
Through the fixation of atmospheric nitrogen and photosynthesis, marine diazotrophs play a critical role in the global cycling of nitrogen and carbon. Crocosphaera watsonii is a recently described unicellular diazotroph that may significantly contribute to marine nitrogen fixation in tropical environments. One of the many factors that can constrain the growth and nitrogen fixation rates of mari...
متن کاملHydrogen cycling by the unicellular marine diazotroph Crocosphaera watsonii strain WH8501.
The hydrogen (H₂) cycle associated with the dinitrogen (N₂) fixation process was studied in laboratory cultures of the marine cyanobacterium Crocosphaera watsonii. The rates of H₂ production and acetylene (C₂H₂) reduction were continuously measured over the diel cycle with simultaneous measurements of fast repetition rate fluorometry and dissolved oxygen. The maximum rate of H₂ production was c...
متن کاملCorrection: Response of the Unicellular Diazotrophic Cyanobacterium Crocosphaera watsonii to Iron Limitation
Iron (Fe) is widely suspected as a key controlling factor of N2 fixation due to the high Fe content of nitrogenase and photosynthetic enzymes complex, and to its low concentrations in oceanic surface seawaters. The influence of Fe limitation on the recently discovered unicellular diazotrophic cyanobacteria (UCYN) is poorly understood despite their biogeochemical importance in the carbon and nit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2011
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1006943108