Ion Concentration Polarization by Bifurcated Current Path
نویسندگان
چکیده
منابع مشابه
Overlimiting current through ion concentration polarization layer: hydrodynamic convection effects.
In this work, we experimentally investigated an effect of the hydrodynamic convective flow on ion transport through a nanoporous membrane in a micro/nanofluidic modeled system. The convective motion of ions in an ion concentration polarization (ICP) layer was controlled by external hydrodynamic inflows adjacent to the nanoporous membrane. The ion depletion region, which is regarded as a high el...
متن کاملDynamics of microvortices induced by ion concentration polarization.
We investigate the coupled dynamics of the local hydrodynamics and global electric response of an electrodialysis system, which consists of an electrolyte solution adjacent to a charge selective membrane under electric forcing. Under a dc electric current, counterions transport through the charged membrane while the passage of co-ions is restricted, thereby developing ion concentration polariza...
متن کاملRecent advancements in ion concentration polarization.
In this minireview, we discuss advancements in ion concentration polarization (ICP)-based preconcentration, separation, desalination, and dielectrophoresis that have been made over the past three years. ICP as a means of controlling the distribution of the ions and electric field in a microfluidic device has rapidly expanded its areas of application. Recent advancements have focused on the deve...
متن کاملEnhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination
Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl- = 2.03[10(-9)m(2)s(-1)]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under...
متن کاملCapillarity ion concentration polarization as spontaneous desalting mechanism
To overcome a world-wide water shortage problem, numerous desalination methods have been developed with state-of-the-art power efficiency. Here we propose a spontaneous desalting mechanism referred to as the capillarity ion concentration polarization. An ion-depletion zone is spontaneously formed near a nanoporous material by the permselective ion transportation driven by the capillarity of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2017
ISSN: 2045-2322
DOI: 10.1038/s41598-017-04646-0