Investigations of void collapse in nanoporous Cu by molecular dynamics simulations

نویسندگان

چکیده

Mechanical responses of nanoporous Cu samples under various loading conditions are investigated by molecular dynamics simulations. Effects mode, initial void size, temperature, and distribution analyzed. The simulations show that the collapse time uniaxial compression is about three times triaxial compression, rate increases as temperature rises. Dislocation nucleation found to stimulate void. For with a single void, final dislocation density lower than which due accumulation greatly slows down after fully collapsed. multiple voids, much faster resulting in higher compression. Irrespective evolutions stress volume fraction remain invariant when fixed; however, decreases radius increases.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics simulations of void and helium bubble stability in amorphous silicon during heavy-ion bombardment

A study of void and helium sHed bubble stability in amorphous silicon sa-Sid subjected to heavy-ion bombardment was conducted with molecular dynamics simulations. The effects of incident ion energy, incident ion direction, and He pressure were investigated. He bubbles with pressures equal to or greater than 0.1 kbar were found to be stable during isotropic 2 keV xenon sXed irradiation. Bubbles ...

متن کامل

On the Measurement of Surface Diffusivity in Disordered Nanoporous Carbon via Molecular Dynamics Simulations

Gas diffusion in nanoporous carbon includes distinct diffusion modes: surface diffusion on the pore walls and non-surface diffusion away from pore walls. We have performed molecular dynamics (MD) simulations of Ar diffusion in disordered nanoporous carbon. The main objective of this work is to separate the surface diffusion and non-surface diffusion contributions so as to comprehend their respe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AIP Advances

سال: 2023

ISSN: ['2158-3226']

DOI: https://doi.org/10.1063/5.0153661