Investigating the redox cycle of tryparedoxin at ultra-high resolution
نویسندگان
چکیده
منابع مشابه
Classification of Ultra-high Resolution Images using Soft Computing
The main objective of this paper is to use a computational intelligence algorithm for preparing a mapping map that categorizes different patterns of identification of infected areas and changes in radiation pollution. In this paper, the use of the fuzzy inference system has been proposed to determine the degree of radiation contamination in the regions. The study uses ultra-high resolution spec...
متن کاملUltra high resolution fMRI at ultra-high field
In this short review article I will summarize the path we took over the years towards increasing the spatial resolution of fMRI. To fully capitalize on the fMRI technique, a better understanding of the origin of the hemodynamic signals, and what factors are governing their spatial control is necessary. Here, I will briefly describe the studies and developments that ultimately led to our success...
متن کاملInner volume BOLD-fMRI at ultra-high spatial resolution
Introduction: Multi-Echo FLASH imaging in combination with echo train shifting [1,2] offers BOLD sensitivity for matrix sizes up to 256 x 256 leading to in-plane resolutions of about 1 mm. Long measurement times and low Signal-to-Noise-Ratio (SNR) preclude BOLDfMRI going to higher resolutions. Hence, only a reduction in the Field-of-View (FOV) further increases spatial resolution. Latter, howev...
متن کاملMitochondrial Redox Metabolism in Trypanosomatids Is Independent of Tryparedoxin Activity
Tryparedoxins (TXNs) are oxidoreductases unique to trypanosomatids (including Leishmania and Trypanosoma parasites) that transfer reducing equivalents from trypanothione, the major thiol in these organisms, to sulfur-dependent peroxidases and other dithiol proteins. The existence of a TXN within the mitochondrion of trypanosomatids, capable of driving crucial redox pathways, is considered a req...
متن کاملUltra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory.
Access to an ultra-wide bore (105 mm) 21.1 T magnet makes possible numerous advances in NMR spectroscopy and MR imaging, as well as novel applications. This magnet was developed, designed, manufactured and tested at the National High Magnetic Field Laboratory and on July 21, 2004 it was energized to 21.1 T. Commercial and unique homebuilt probes, along with a standard commercial NMR console hav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Crystallographica
سال: 2021
ISSN: ['2053-2733']
DOI: https://doi.org/10.1107/s0108767321092989