Investigating Bayesian Optimization for rail network optimization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Optimization Algorithms for Multi-objective Optimization

In recent years, several researchers have concentrated on using probabilistic models in evolutionary algorithms. These Estimation Distribution Algorithms (EDA) incorporate methods for automated learning of correlations between variables of the encoded solutions. The process of sampling new individuals from a probabilistic model respects these mutual dependencies such that disruption of importan...

متن کامل

Efficient Bayesian Network Learning for System Optimization in Reliability Engineering

We present a new Bayesian network modeling that learns the behavior of an unknown system from real data and can be used for reliability engineering and optimization processes in industrial systems. The suggested approach relies on quantitative criteria for addressing the trade-off between the complexity of a learned model and its prediction accuracy. These criteria are based on measures from In...

متن کامل

FPGA implementation of particle swarm optimization for Bayesian network learning

Using a Bayesian network (BN) learned from data can aid in diagnosing and predicting failures within a system while achieving other capabilities such as the monitoring of a system. However, learning a BN requires computationally intensive processes. This makes BN learning a candidate for acceleration using reconfigurable hardware such as fieldprogrammable gate arrays (FPGAs). We present a FPGA-...

متن کامل

Adaptive Neural Network Representations for Parallel and Scalable Bayesian Optimization

Bayesian optimization has emerged as a powerful, new technique for interpolating and optimizing a wide range of functions which are expensive to compute. The primary tool of Bayesian optimization is the Gaussian process, which permits one to define a prior belief, which is then transformed into a posterior through sequential sampling of points. Unfortunately, Gaussian process interpolation suff...

متن کامل

Bayesian Optimization for Parameter Tuning of the XOR Neural Network

When applying Machine Learning techniques to problems, one must select model parameters to ensure that the system converges but also does not become stuck at the objective function’s local minimum. Tuning these parameters becomes a non-trivial task for large models and it is not always apparent if the user has found the optimal parameters. We aim to automate the process of tuning a Neural Netwo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Rail Transportation

سال: 2019

ISSN: 2324-8378,2324-8386

DOI: 10.1080/23248378.2019.1669500