Inverting linear combinations of identity and generalized Catalan matrices
نویسندگان
چکیده
منابع مشابه
Generalized Catalan Numbers: Linear Recursion and Divisibility
We prove a linear recursion for the generalized Catalan numbers Ca(n) := 1 (a−1)n+1 ( an n ) when a ≥ 2. As a consequence, we show p |Cp(n) if and only if n 6= p−1 p−1 for all integers k ≥ 0. This is a generalization of the well-known result that the usual Catalan number C2(n) is odd if and only if n is a Mersenne number 2 k − 1. Using certain beautiful results of Kummer and Legendre, we give a...
متن کاملGeneralized Doubly Stochastic Matrices and Linear Preservers
A real or complex n × n matrix is generalized doubly stochastic if all of its row sums and column sums equal one. Denote by V the linear space spanned by such matrices. We study the reducibility of V under the group Γ of linear operators of the form A 7→ PAQ, where P and Q are n×n permutation matrices. Using this result, we show that every linear operator φ : V → V mapping the set of generalize...
متن کاملVery cleanness of generalized matrices
An element $a$ in a ring $R$ is very clean in case there exists an idempotent $ein R$ such that $ae = ea$ and either $a- e$ or $a + e$ is invertible. An element $a$ in a ring $R$ is very $J$-clean provided that there exists an idempotent $ein R$ such that $ae = ea$ and either $a-ein J(R)$ or $a + ein J(R)$. Let $R$ be a local ring, and let $sin C(R)$. We prove that $Ain K_...
متن کاملOn Nonsingularity of Linear Combinations of Tripotent Matrices
Let T1 and T2 be two commuting n × n tripotent matrices and c1, c2 two nonzero complex numbers. The problem of when a linear combination of the form T = c1T1 + c2T2 is nonsingular is considered. Some other nonsingularitytype relationships for tripotent matrices are also established. Moreover, a statistical interpretation of the results is pointed out.
متن کاملGeneralized Catalan Numbers and Generalized Hankel Transformations
so that an is the sum of the n th and n + 1 Catalan numbers. Then the Hankel transform of {a0, a1, a2, . . .} begins 2, 5, 13, 34, . . .. Layman first conjectured in the On-Line Encyclopedia of Integer Sequences ([4], see sequence A001906) that this sequence consists of every other Fibonacci number, and subsequently Cvetković, Rajković and Ivković [2] proved this conjecture. The current paper a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2010
ISSN: 0024-3795
DOI: 10.1016/j.laa.2010.06.026