Invertibility characterization of Wiener–Hopf plus Hankel operators on variable exponent Lebesgue spaces via even asymmetric factorization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hankel Operators and Weak Factorization for Hardy-orlicz Spaces

We study the holomorphic Hardy-Orlicz spaces H(Ω), where Ω is the unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex domain in C. The function Φ is in particular such that H(Ω) ⊂ H(Ω) ⊂ H(Ω) for some p > 0. We develop for them maximal characterizations, atomic and molecular decompositions. We then prove weak factorization theorems involving the space BMOA(Ω)...

متن کامل

Littlewood-Paley Operators on Morrey Spaces with Variable Exponent

By applying the vector-valued inequalities for the Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, the boundedness of the Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g μ *-functions, and their commutators generated by BMO functions, is obtained on the Morrey spaces with variable exponent.

متن کامل

Invertibility of matrix Wiener-Hopf plus Hankel operators with APW Fourier symbols

Operators of Wiener-Hopf plus Hankel type have been receiving an increasing attention in the last years (see [1, 2, 4, 6, 10, 12–16]). Some of the interest in their study arises directly from concrete applications where these kind of operators appear. This is the case in problems of wave diffraction by some particular rectangular geometries which originate specific boundary-transmission value p...

متن کامل

On Variable Exponent Amalgam Spaces

We derive some of the basic properties of weighted variable exponent Lebesgue spaces L p(.) w (R) and investigate embeddings of these spaces under some conditions. Also a new family of Wiener amalgam spaces W (L p(.) w , L q υ) is defined, where the local component is a weighted variable exponent Lebesgue space L p(.) w (R) and the global component is a weighted Lebesgue space Lυ (R) . We inves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Georgian Mathematical Journal

سال: 2016

ISSN: 1572-9176,1072-947X

DOI: 10.1515/gmj-2016-0048