Inverse Problems for Difference Equations with Quadratic Eigenparameter Dependent Boundary Conditions-II
نویسندگان
چکیده
منابع مشابه
Quadratic eigenparameter-dependent quantum difference equations
The main aim of this paper is to construct quantum extension of the discrete Sturm–Liouville equation consisting of second-order difference equation and boundary conditions that depend on a quadratic eigenvalue parameter. We consider a boundary value problem (BVP) consisting of a second-order quantum difference equation and boundary conditions that depend on the quadratic eigenvalue parameter. ...
متن کاملInverse Nodal Problems for the Sturm–liouville Operator with Eigenparameter Dependent Boundary Conditions
An inverse nodal problem consists in reconstructing this operator from the given zeros of their eigenfunctions. In this work, we are concerned with the inverse nodal problem of the Sturm-Liouville operator with eigenparameter dependent boundary conditions on a finite interval. We prove uniqueness theorems: a dense subset of nodal points uniquely determine the parameters of the boundary conditio...
متن کاملInverse nodal problems for the p-Laplacian with eigenparameter dependent boundary conditions
We study the issues of reconstruction of the inverse nodal problem for the one-dimensional p-Laplacian eigenvalue problem with eigenparameter boundary value conditions. A key step is the application of a modified Prüfer substitution to derive a detailed asymptotic expansion for the eigenvalues and nodal lengths. The parameter boundary data are also reconstructed.
متن کاملRiesz Bases of Root Vectors of Indefinite Sturm-liouville Problems with Eigenparameter Dependent Boundary Conditions. Ii
We employ an operator theoretic setting established in [2]. Under Condition 2.1 below, a self-adjoint (actually quasi-uniformly positive [7]) operator A in the Krein space L2,r(−1, 1)⊕C 2 ∆ is associated with the eigenvalue problem (1.1), (1.2). Here ∆ is a 2 × 2 nonsingular Hermitean matrix which is determined by M and N; see Section 2 for details. We remark that the topology of this Krein spa...
متن کاملEigenparameter Dependent Inverse Sturm-Liouville Problems
Uniqueness of and numerical techniques for the inverse Sturm-Liouville problem with eigenparameter dependent boundary conditions will be discussed. We will use a Gel’fand-Levitan technique to show that the potential q in u00 þ qu 1⁄4 u, 0 < x < 1 uð0Þ 1⁄4 0, ða þ bÞuð1Þ 1⁄4 ðc þ d Þu0ð1Þ can be uniquely determined using spectral data. In the presence of finite spectral data, q can be reconstruc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2016
ISSN: 2160-0368,2160-0384
DOI: 10.4236/apm.2016.610051