Inverse Problem Sputtering. II.
نویسندگان
چکیده
منابع مشابه
Inverse Problem For Upper Asymptotic Density II
Inverse problems study the structure of a set A when the A+A is “small”. In the article, the structure of an infinite set A of natural numbers is described when A+A has the least possible upper asymptotic density and A contains two consecutive numbers. For example, if the upper asymptotic density α of A is between 0 and 2 , the upper asymptotic density of A+A is less than or equal to 3 2α, and ...
متن کاملThe Inverse Problem on Subset Sums, II
For a set T of integers, let P (T ) be the set of all finite subset sums of T , and let T (x) be the set of all integers of T not exceeding x. Let B = {b1 < b2 < · · · } be a sequence of integers and d1 = 10, d2 = 3b1 + 4, and dn = 3bn−1 + 2 (n ≥ 3). In this paper, we prove that (i) if bn > dn for all n ≥ 1, then there exists a sequence of positive integers A = {a1 < a2 < · · · } such that, for...
متن کاملInverse feasible problem
In many infeasible linear programs it is important to construct it to a feasible problem with a minimum pa-rameters changing corresponding to a given nonnegative vector. This paper defines a new inverse problem, called “inverse feasible problem”. For a given infeasible polyhedron and an n-vector a minimum perturba-tion on the parameters can be applied and then a feasible polyhedron is concluded.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولHolography and the inverse source problem . Part II : Inhomogeneous media
The inverse source problem for a monochromatic source imbedded in a nonabsorbing inhomogeneous medium is investigated within the framework of the reduced scalar wave equation. The Porter-Bojarski integral equation previously formulated for sources imbedded in vacuum is generalized to this case, as are the class of nonradiating and minimum-energy sources considered in Part I [J. Opt. Soc. Am. 72...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SHINKU
سال: 1997
ISSN: 0559-8516,1880-9413
DOI: 10.3131/jvsj.40.306