Inverse problem for coefficient identification in the Euler–Bernoulli equation
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولInverse Problem for Coefficient Identification in Euler-Bernoulli Equation by Linear Spline Approximation
We display the performance of the technique called Method of Variational Imbedding for solving the inverse problem of coefficient identification in Euler-Bernoulli equation from over-posed data. The original inverse problem is replaced by a minimization problem. The EulerLagrange equations comprise an eight-order equation for the solution of the original equation and an explicit system of equat...
متن کاملAn inverse problem of identifying the coefficient of semilinear parabolic equation
In this paper, a variational iteration method (VIM), which is a well-known method for solving nonlinear equations, has been employed to solve an inverse parabolic partial differential equation. Inverse problems in partial differential equations can be used to model many real problems in engineering and other physical sciences. The VIM is to construct correction functional using general Lagr...
متن کاملInverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential
In the present work, under some di¤erentiability conditions on the potential functions , we rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...
متن کاملAN INVERSE PROBLEM FOR THE WAVE EQUATION WITH A TIME DEPENDENT COEFFICIENT Rakesh
Let Ω ⊂ R, n ≥ 2, be a bounded domain with smooth boundary. Consider utt −4xu+ q(x, t)u = 0 in Ω× [0, T ] u(x, 0) = 0, ut(x, 0) = 0 if x ∈ Ω u(x, t) = f(x, t) on ∂Ω× [0, T ] We show that if u and f are known on ∂Ω× [0, T ], for all f ∈ C∞ 0 (∂Ω× [0, T ]), then q(x, t) may be reconstructed on C = { (x, t) : x∈Ω, 0 < t < T, x− tω & x+ (T − t)ω 6∈ Ω ∀ ω ∈ R, |ω| = 1 } provided q is known at all po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2008
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2007.11.048