Inverse mean curvature flow over non-star-shaped surfaces

نویسندگان

چکیده

We derive an upper bound on the waiting time for a variational weak solution to Inverse Mean Curvature Flow in $\mathbb{R}^{n+1}$ become star-shaped. As consequence, we demonstrate that any connected surface moving by flow which is not initially topological sphere develops singularity or self-intersection within prescribed interval depending only initial data. Finally, establish existence of either finite-time singularities intersections certain spheres under IMCF.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Timelike Surfaces with Harmonic Inverse Mean Curvature

In classical differential geometry, surfaces of constant mean curvature (CMC surfaces) have been studied extensively [1]. As a generalization of CMC surfaces, Bobenko [2] introduced the notion of surface with harmonic inverse mean curvature (HIMC surface). He showed that HIMC surfaces admit Lax representation with variable spectral parameter. In [5], Bobenko, Eitner and Kitaev showed that the G...

متن کامل

Surfaces with Harmonic Inverse Mean Curvature and Painlev Equations

In this paper we study surfaces immersed in R such that the mean curvature function H satisfies the equation (1=H) = 0, where is the Laplace operator of the induced metric. We call them HIMC surfaces. All HIMC surfaces of revolution are classified in terms of the third Painlevé transcendent. In the general class of HIMC surfaces we distinguish a subclass of -isothermic surfaces, which is a gene...

متن کامل

Mean Curvature Blowup in Mean Curvature Flow

In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.

متن کامل

The Inverse Mean Curvature Flow in Cosmological Spacetimes

We prove that the leaves of an inverse mean curvature flow provide a foliation of a future end of a cosmological spacetime N under the necessary and sufficent assumptions that N satisfies a future mean curvature barrier condition and a strong volume decay condition. Moreover, the flow parameter t can be used to define a new physically important time function.

متن کامل

Non-collapsing in Mean-convex Mean Curvature Flow

We provide a direct proof of a non-collapsing estimate for compact hypersurfaces with positive mean curvature moving under the mean curvature flow: Precisely, if every point on the initial hypersurface admits an interior sphere with radius inversely proportional to the mean curvature at that point, then this remains true for all positive times in the interval of existence. We follow [4] in defi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2022

ISSN: ['1073-2780', '1945-001X']

DOI: https://doi.org/10.4310/mrl.2022.v29.n4.a7