منابع مشابه
Almost multiplicative linear functionals and approximate spectrum
We define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital Banach algebra A and show that the δ-approximate spectrum σ_δ (a) of a is compact. The relation between the δ-approximate spectrum and the usual spectrum is investigated. Also an analogue of the classical Gleason-Kahane-Zelazko theorem is established: For each ε>0, there is δ>0 such that if ϕ is...
متن کاملInvariant Functionals on Speh Representations
We study Sp2n(R)-invariant functionals on the spaces of smooth vectors in Speh representations of GL2n(R). For even n we give expressions for such invariant functionals using an explicit realization of the space of smooth vectors in the Speh representations. Furthermore, we show that the functional we construct is, up to a constant, the unique functional on the Speh representation which is inva...
متن کاملSymmetries of Linear Functionals
It is shown that a linear functional on a space of functions can be described by G, a group of its symmetries, together with the restriction of to certain G-invariant functions. This simple consequence of invariant theory has long been used, implicitly, in the construction of numerical integration rules. It is the author's hope that, by showing that these ideas have nothing to do with the origi...
متن کاملOn Strong Invariant Coordinate System (SICS) Functionals
In modern multivariate statistical analysis, affine invariance or equivariance for statistical procedures are properties of paramount interest and importance. A statistical procedure lacking such a property can sometimes acquire it if carried out not on the original data but rather on suitably transformed data, in some cases accompanied by a retransformation back to the original coordinate syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 1972
ISSN: 0004-9735
DOI: 10.1017/s1446788700010752