Intuitionistic Predicate Calculus with ^|^epsilon;-Symbol

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intuitionistic Existential Instantiation and Epsilon Symbol

A natural deduction system for intuitionistic predicate logic with existential instantiation rule presented here uses Hilbert’s ǫ-symbol. It is conservative over intuitionistic predicate logic. We provide a completeness proof for a suitable Kripke semantics, sketch an approach to a normalization proof, survey related work and state some open problems. Our system extends intuitionistic systems w...

متن کامل

The alpha-epsilon calculus

This paper is a brief intoduction to the αǫ-calculus – a calculus of communication and duplication inspired by the structure of the classical quantifiers. We will summarize the results of a paper in preparation on connections between extensions of the calculus, sequent systems/proof nets for classical logic, and Herbrand’s theorem.

متن کامل

A Hybrid Predicate Calculus∗

We present the Hybrid Predicate Calculus (HPC), a hybrid logical system which incorporates a fairly conventional first-order predicate calculus, but which also include elements of modal logic and relational algebra. A special effort has been made to produce a (syntactically and semantically) well-integrated whole, rather than just a disjoint union. Our calculus, from a formal point of view, is ...

متن کامل

Discrete Symbol Calculus

This paper deals with efficient numerical representation and manipulation of differential and integral operators as symbols in phase-space, i.e., functions of space x and frequency ξ. The symbol smoothness conditions obeyed by many operators in connection to smooth linear partial differential equations allow to write fast-converging, non-asymptotic expansions in adequate systems of rational Che...

متن کامل

An intuitionistic λ-calculus with exceptions

We introduce a typed λ-calculus which allows the use of exceptions in the ML style. It is an extension of the system AF2 of Krivine and Leivant ((Krivine, 1990a), (Leivant, 1983)). We show its main properties : confluence, strong normalization and weak subject reduction. The system satisfies the “the proof as program” paradigm as in AF2 . Moreover, the underlined logic of our system is intuitio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of the Japan Association for Philosophy of Science

سال: 1971

ISSN: 0453-0691,1884-1228

DOI: 10.4288/jafpos1956.4.49