Introducing Weingarten cyclic surfaces in R3

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On linear Weingarten surfaces

In this paper we study surfaces in Euclidean 3-space that satisfy a Weingarten condition of linear type as κ1 = mκ2 + n, where m and n are real numbers and κ1 and κ2 denote the principal curvatures at each point of the surface. We investigate the possible existence of such surfaces parametrized by a uniparametric family of circles. Besides the surfaces of revolution, we prove that not exist mor...

متن کامل

Linear Weingarten Surfaces in R

In this paper we study properties of linear Weingarten immersions and graphs related to non-existence problems and behaviour of its curvatures. The main results are obtained giving a harmonic representation of linear Weingarten surfaces and by proving optimal estimates of the height and curvatures that the immersion must satisfy, characterizing the spherical caps as the only ones achieving thes...

متن کامل

Parabolic Weingarten surfaces in hyperbolic space

A surface in hyperbolic space H 3 invariant by a group of parabolic isometries is called a parabolic surface. In this paper we investigate parabolic surfaces of H 3 that satisfy a linear Weingarten relation of the form aκ1 + bκ2 = c or aH + bK = c, where a, b, c ∈ R and, as usual, κi are the principal curvatures, H is the mean curvature and K is de Gaussian curvature. We classify all parabolic ...

متن کامل

Linear Weingarten Helicoidal Surfaces in Isotropic Space

Introduced in 1861 [1], a Weingarten surface in the Euclidean three-dimensional space E3 is a surface M, whose mean curvature H and Gaussian curvature K satisfy a non-trivial relation Φ(H, K) = 0. Such a surface was introduced by Weingarten. The class of Weingarten surfaces is remarkably large, and it consists of intriguing surfaces in the Euclidean space: the constant mean curvature surfaces, ...

متن کامل

Rotational linear Weingarten surfaces of hyperbolic type

A linear Weingarten surface in Euclidean space R 3 is a surface whose mean curvature H and Gaussian curvature K satisfy a relation of the form aH + bK = c, where a, b, c ∈ R. Such a surface is said to be hyperbolic when a + 4bc < 0. In this paper we classify all rotational linear Weingarten surfaces of hyperbolic type. As a consequence, we obtain a family of complete hyperbolic linear Weingarte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Egyptian Mathematical Society

سال: 2017

ISSN: 1110-256X

DOI: 10.1016/j.joems.2016.06.001