Intersection diagrams of distance-biregular graphs
نویسندگان
چکیده
منابع مشابه
The Spectral Excess Theorem for Distance-Biregular Graphs
The spectral excess theorem for distance-regular graphs states that a regular (connected) graph is distance-regular if and only if its spectral-excess equals its average excess. A bipartite graph Γ is distance-biregular when it is distance-regular around each vertex and the intersection array only depends on the stable set such a vertex belongs to. In this note we derive a new version of the sp...
متن کاملVoronoi Diagrams from Distance Graphs ∗
We present a new type of Voronoi diagram in R that respects the anisotropy exerted on the plane by a given distance graph. It is based on a metric obtained by smoothly and injectively embedding R into R, and a scalar-valued function for re-scaling the distances. A spline representation of the embedding surface is constructed with the Gauß-Newton algorithm, which approximates the given distance ...
متن کاملOn cycles in intersection graphs of rings
Let $R$ be a commutative ring with non-zero identity. We describe all $C_3$- and $C_4$-free intersection graph of non-trivial ideals of $R$ as well as $C_n$-free intersection graph when $R$ is a reduced ring. Also, we shall describe all complete, regular and $n$-claw-free intersection graphs. Finally, we shall prove that almost all Artin rings $R$ have Hamiltonian intersection graphs. ...
متن کاملAntimagic Orientation of Biregular Bipartite Graphs
An antimagic labeling of a directed graph D with n vertices and m arcs is a bijection from the set of arcs of D to the integers {1, . . . ,m} such that all n oriented vertex sums are pairwise distinct, where an oriented vertex sum is the sum of labels of all arcs entering that vertex minus the sum of labels of all arcs leaving it. An undirected graph G is said to have an antimagic orientation i...
متن کاملMatchings in Random Biregular Bipartite Graphs
We study the existence of perfect matchings in suitably chosen induced subgraphs of random biregular bipartite graphs. We prove a result similar to a classical theorem of Erdős and Rényi about perfect matchings in random bipartite graphs. We also present an application to commutative graphs, a class of graphs that are featured in additive number theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 1990
ISSN: 0095-8956
DOI: 10.1016/0095-8956(90)90076-c