Interpolation by periodic radial basis functions
نویسندگان
چکیده
منابع مشابه
Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملSurface interpolation with radial basis functions formedical
| Radial basis functions are presented as a practical solution to the problem of interpolating incomplete surfaces derived from three-dimensional (3-D) medical graphics. The speciic application considered is the design of cranial implants for the repair of defects, usually holes, in the skull. Radial basis functions impose few restrictions on the geometry of the interpolation centers and are su...
متن کاملVector Field Interpolation with Radial Basis Functions
This paper presents a new approach for the Radial Basis Function (RBF) interpolation of a vector field. Standard approaches for interpolation randomly select points for interpolation. Our approach uses the knowledge of vector field topology and selects points for interpolation according to the critical points location. We presents the results of interpolation errors on a vector field generated ...
متن کاملInterpolation by Radial Basis Functions on Sobolev Space
Interpolation by translates of suitable radial basis functions is an important approach towards solving the scattered data problem. However, for a large class of smooth basis functions (including multiquadrics f(x)=(|x|+l), m > d/2, 2m−d ̈ 2Z), the existing theories guarantee the interpolant to approximate well only for a very small class of very smooth approximands. The approximands f need to b...
متن کاملVariational Methods for Interpolation, Particularly by Radial Basis Functions
In this paper we give an overview of the variational approach to interpolation. Our particular interest is in the theory of radial basis functions, which include natural splines as a special case. Our approach is expository, seeking to put into a general framework seemly disparate results. However, at the end of the paper we do provide some glimpses of new results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1992
ISSN: 0022-247X
DOI: 10.1016/0022-247x(92)90193-h