Interpolating Sequences of Parabolic Bergman Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Interpolating Sequences for the Bergman Spaces

Most characterizations of interpolating sequences for Bergman spaces include the condition that the sequence be uniformly discrete in the hyperbolic metric. We show that if the notion of interpolation is suitably generalized, two of these characterizations remain valid without that condition. The general interpolation we consider here includes the usual simple interpolation and multiple interpo...

متن کامل

Interpolating Sequences on Analytic Besov Type Spaces

We characterize the interpolating sequences for the weighted analytic Besov spaces Bp(s), defined by the norm ‖f‖ Bp(s) = |f(0)|p + Z D |(1− |z|2)f ′(z)|p(1− |z|2)s dA(z) (1− |z|2)2 , 1 < p < ∞ and 0 < s < 1, and for the corresponding multiplier spaces M(Bp(s)).

متن کامل

On Seip’s Description of Sampling Sequences for Bergman Spaces

In his 1993 paper [10], Kristian Seip characterizes sampling and interpolation sequences for the space A−n and gives an outline of the proof of the corresponding theorem for the Bergman space A2. Using his techniques, we provide a complete proof of the result concerning sampling sequences not only for A2, but also for Ap, 1 ≤ p < ∞.

متن کامل

Carleson Measure Problems for Parabolic Bergman Spaces and Homogeneous Sobolev Spaces

Let bα(R 1+n + ) be the space of solutions to the parabolic equation ∂tu+ (−△)u = 0 (α ∈ (0, 1]) having finite L(R 1+n + ) norm. We characterize nonnegative Radon measures μ on R + having the property ‖u‖Lq(R1+n + ,μ) . ‖u‖ Ẇ1,p(R + ) , 1 ≤ p ≤ q < ∞, whenever u(t, x) ∈ bα(R 1+n + ) ∩ Ẇ 1.p(R + ). Meanwhile, denoting by v(t, x) the solution of the above equation with Cauchy data v0(x), we chara...

متن کامل

Interpolating Sequences for the Bergman Space and the ∂̄-equation in Weighted L

The author has previously shown that a sequence in the unit disk is a zero sequence for the Bergman space A if and only if a certain weighted L space contains a non-zero (equivalently, zero-free) analytic function. The weight in question is given by a simple formula summed over the zero set. Here we show that a sequence in the unit disk is an interpolating sequence for A if and only if it is se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Potential Analysis

سال: 2008

ISSN: 0926-2601,1572-929X

DOI: 10.1007/s11118-008-9082-8