Interplay between magnetism and chemical structure at spinel-spinel interfaces
نویسندگان
چکیده
منابع مشابه
Structure and Magnetism in λ-MnO2. Geometric Frustration in a Defect Spinel
λ-MnO2, a metastable form of manganese dioxide, retains the cubic spinel structure upon lithium removal from LiMn2O4 by soft chemical methods, either electrochemical or acid leaching. The minimum lithium content, achieved by the latter route at pH 1, is Li0.10MnO2, which is in reasonable agreement with previous reports. For lithium contents near the minimum value, long-range antiferromagnetic o...
متن کاملCrystal structure of spinel-type Li0.64Fe2.15Ge0.21O4
Spinel-type Li0.64Fe2.15Ge0.21O4, lithium diiron(III) germanium tetra-oxide, has been formed as a by-product during flux growth of an Li-Fe-Ge pyroxene-type material. In the title compound, lithium is ordered on the octa-hedral B sites, while Ge(4+) orders onto the tetra-hedral A sites, and iron distributes over both the octa-hedral and tetra-hedral sites, and is in the trivalent state as deter...
متن کاملCrystallographic Distribution of Internal Interfaces in Spinel Polycrystals
Measurements of the grain boundary character distribution in MgAl2O4 (spinel) as a function of lattice misorientation and boundary plane orientation show that at all misorientations, grain boundaries are most frequently terminated on {111} planes. Boundaries with {111} orientations are observed 2.5 times more frequently than boundaries with {100} orientations. Furthermore, the most common bound...
متن کاملThe Spinel Explorer - Interactive Visual Analysis of Spinel Group Minerals
Geologists usually deal with rocks that are up to several thousand million years old. They try to reconstruct the tectonic settings where these rocks were formed and the history of events that affected them through the geological time. The spinel group minerals provide useful information regarding the geological environment in which the host rocks were formed. They constitute excellent indicato...
متن کاملPolar Spinel-Perovskite Interfaces: an atomistic study of Fe3O4(111)/SrTiO3(111) structure and functionality
Atomic resolution scanning transmission electron microscopy and electron energy loss spectroscopy combined with ab initio electronic calculations are used to determine the structure and properties of the Fe3O4(111)/SrTiO3(111) polar interface. The interfacial structure and chemical composition are shown to be atomically sharp and of an octahedral Fe/SrO3 nature. Band alignment across the interf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2012
ISSN: 0021-8979,1089-7550
DOI: 10.1063/1.4707890