Interlayer Exciton Optoelectronics in a 2D Heterostructure p–n Junction
نویسندگان
چکیده
منابع مشابه
An anomalous interlayer exciton in MoS2
The few layer transition metal dichalcogenides are two dimensional materials that have an intrinsic gap of the order of ≈2 eV. The reduced screening in two dimensions implies a rich excitonic physics and, as a consequence, many potential applications in the field of opto-electronics. Here we report that a layer perpendicular electric field, by which the gap size in these materials can be effici...
متن کاملStatistics of Exciton Emission in a Semiconductor Microcavity: Detuning and Exciton-Exciton Effects
We consider the interaction of quantum light with an ideal semiconductor microcavity. We investigate photon statistics in different conditions and the presence of detuning and exciton-exciton interaction. We show that in the resonant interaction and absence of the exciton-exciton interaction, the state of the whole system can be considered as coherent state. According to our results, it turns...
متن کاملSpin-orbit effects in a graphene bipolar pn junction
A graphene pn junction is studied theoretically in the presence of both intrinsic and Rashba spin-orbit couplings. We show that a crossover from perfect reflection to perfect transmission is achieved at normal incidence by tuning perpendicular electric field. By further studying angular dependent transmission, we demonstrate that perfect reflection at normal incidence can be clearly distinguish...
متن کاملA Nanoscale PN Junction in Series with Tunable Schottky Barriers
PN junctions in nanoscale materials are of interest for a range of technologies including photodetectors, solar cells and light-emitting diodes. However, Schottky barriers at the interface between metal contacts and the nanomaterial are often unavoidable. The effect of metalsemiconductor interfaces on the behavior of nanoscale diodes must be understood, both to extract the characteristics of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Letters
سال: 2017
ISSN: 1530-6984,1530-6992
DOI: 10.1021/acs.nanolett.6b03398