Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods

The paper extends prior work by the authors on LOQO, an interior point algorithm for nonconvex nonlinear programming. The specific topics covered include primal versus dual orderings and higher order methods, which attempt to use each factorization of the Hessian matrix more than once to improve computational efficiency. Results show that unlike linear and convex quadratic programming, higher o...

متن کامل

Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts

In this paper, we investigate the use of an exact primal-dual penalty approach within the framework of an interior-point method for nonconvex nonlinear programming. This approach provides regularization and relaxation, which can aid in solving ill-behaved problems and in warmstarting the algorithm. We present details of our implementation within the loqo algorithm and provide extensive numerica...

متن کامل

Interior-point Methods for Nonconvex Nonlinear Programming: Complementarity Constraints

In this paper, we present the formulation and solution of optimization problems with complementarity constraints using an interior-point method for nonconvex nonlinear programming. We identify possible difficulties that could arise, such as unbounded faces of dual variables, linear dependence of constraint gradients and initialization issues. We suggest remedies. We include encouraging numerica...

متن کامل

Interior-point methods for nonconvex nonlinear programming: cubic regularization

In this paper, we present a barrier method for solving nonlinear programming problems. It employs a Levenberg-Marquardt perturbation to the Karush-Kuhn-Tucker (KKT) matrix to handle indefinite Hessians and a line search to obtain sufficient descent at each iteration. We show that the Levenberg-Marquardt perturbation is equivalent to replacing the Newton step by a cubic regularization step with ...

متن کامل

Interior-point Methods for Nonconvex Nonlinear Programming: Primal-dual Methods and Cubic Regularization

In this paper, we present a primal-dual interior-point method for solving nonlinear programming problems. It employs a Levenberg-Marquardt (LM) perturbation to the Karush-Kuhn-Tucker (KKT) matrix to handle indefinite Hessians and a line search to obtain sufficient descent at each iteration. We show that the LM perturbation is equivalent to replacing the Newton step by a cubic regularization ste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2000

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s101070050116