Interior penalty methods for finite element approximations of the Signorini problem in elastostatics
نویسندگان
چکیده
منابع مشابه
Hybrid finite element methods for the Signorini problem
We study three mixed linear finite element methods for the numerical simulation of the two-dimensional Signorini problem. Applying Falk’s Lemma and saddle point theory to the resulting discrete mixed variational inequality allows us to state the convergence rate of each of them. Two of these finite elements provide optimal results under reasonable regularity assumptions on the Signorini solutio...
متن کاملCONTINUOUS INTERIOR PENALTY hp-FINITE ELEMENT METHODS FOR TRANSPORT OPERATORS
A continuous interior penalty hp-finite element method that penalizes the jump of the discrete solution across mesh interfaces is introduced. Error estimates are obtained for first-order and advection-dominated transport operators. The analysis relies on three technical results that are of independent interest: an hp-inverse trace inequality, a local discontinuous to continuous hp-interpolation...
متن کاملCoupling Methods for Interior Penalty Discontinuous Galerkin Finite Element Methods and Boundary Element Methods
This paper presents three new coupling methods for interior penalty discontinuous Galerkin finite element methods and boundary element methods. The new methods allow one to use discontinuous basis functions on the interface between the subdomains represented by the finite element and boundary element methods. This feature is particularly important when discontinuous Galerkin finite element meth...
متن کاملA Posteriori Error Estimation for Interior Penalty Finite Element Approximations of the Advection-Reaction Equation
In this note we consider residual-based a posteriori error estimation for finite element approximations of the transport equation. For the discretization we use piecewise affine continuous or discontinuous finite elements and symmetric stabilization of interior penalty type. The lowest order discontinuous Galerkin method using piecewise constant approximation is included as a special case. The ...
متن کاملInterior penalty preconditioners for mixed finite element approximations of elliptic problems
It is established that an interior penalty method applied to secondorder elliptic problems gives rise to a local operator which is spectrally equivalent to the corresponding nonlocal operator arising from the mixed finite element method. This relation can be utilized in order to construct preconditioners for the discrete mixed system. As an example, a family of additive Schwarz preconditioners ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1982
ISSN: 0898-1221
DOI: 10.1016/0898-1221(82)90038-4