Interferon-resistant Human Melanoma Cells Are Deficient in ISGF3 Components, STAT1, STAT2, and p48-ISGF3γ
نویسندگان
چکیده
منابع مشابه
IFN-gamma priming up-regulates IFN-stimulated gene factor 3 (ISGF3) components, augmenting responsiveness of IFN-resistant melanoma cells to type I IFNs.
IFN-stimulated gene factor 3 (ISGF3) mediates transcriptional activation of IFN-sensitive genes (ISGs). The component subunits of ISGF3, STAT1alphabeta, STAT2, and p48-ISGF3gamma, are tyrosine phosphorylated before their assembly into a complex. Subsequently, the ISGF3 complex is translocated to the nucleus. We have recently established that the responsiveness of human melanoma cell lines to ty...
متن کاملSTAT2/IRF9 directs a prolonged ISGF3-like transcriptional response and antiviral activity in the absence of STAT1
Evidence is accumulating for the existence of a signal transducer and activator of transcription 2 (STAT2)/interferon regulatory factor 9 (IRF9)-dependent, STAT1-independent interferon alpha (IFNα) signalling pathway. However, no detailed insight exists into the genome-wide transcriptional regulation and the biological implications of STAT2/IRF9-dependent IFNα signalling as compared with interf...
متن کاملCancer Therapeutics Insights REST Negatively and ISGF3 Positively Regulate the Human STAT1 Gene in Melanoma
STAT1 plays a pivotal role in signal transduction and transcriptional activation in response to type I and II IFNs. Regulation of STAT1 expression has significant consequences in human cancer cells, where STAT1 deficiencies have been associated with cellular resistance to type I IFN. Distinct promoter, enhancer, and repressor regions have previously beendescribed in the regulatory part of the h...
متن کاملREST negatively and ISGF3 positively regulate the human STAT1 gene in melanoma.
STAT1 plays a pivotal role in signal transduction and transcriptional activation in response to type I and II IFNs. Regulation of STAT1 expression has significant consequences in human cancer cells, where STAT1 deficiencies have been associated with cellular resistance to type I IFN. Distinct promoter, enhancer, and repressor regions have previously been described in the regulatory part of the ...
متن کاملInterferon regulatory factor subcellular localization is determined by a bipartite nuclear localization signal in the DNA-binding domain and interaction with cytoplasmic retention factors.
The transduction of type I interferon signals to the nucleus relies on activation of a protein complex, ISGF3, involving two signal transducers and activators of transcription (STAT) proteins, STAT1 and STAT2, and the interferon (IFN) regulatory factor (IRF) protein, p48/ISGF3gamma. The STAT subunits are cytoplasmically localized in unstimulated cells and rapidly translocate to the nucleus of I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 1997
ISSN: 0021-9258
DOI: 10.1074/jbc.272.45.28779