Intelligent Reflecting Surface Configurations for Smart Radio Using Deep Reinforcement Learning

نویسندگان

چکیده

Intelligent reflecting surface (IRS) is envisioned to change the paradigm of wireless communications from “adapting channels” “changing channels”. However, current IRS configuration schemes, consisting sub-channel estimation and passive beamforming in sequence, conform conventional model-based design philosophies are difficult be realized practically complex radio environment. To create smart environment, we propose a model-free control that independent channel state information (CSI) requires minimum interaction between communication system. We firstly model as Markov decision process (MDP) apply deep reinforcement learning (DRL) perform real-time coarse phase IRS. Then, extremum seeking (ESC) fine Finally, by updating frame structure, integrate DRL ESC improve its adaptivity different dynamics. Numerical results show superiority our proposed joint scheme verify effectiveness without CSI.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Personalized Intelligent Tutoring System Using Reinforcement Learning

In this paper, we present a Personalized Intelligent Tutoring System that uses Reinforcement Learning techniques to implicitly learn teaching rules and provide instructions to students based on their needs. The system works on coarsely labeled data with minimum expert knowledge to ease extension

متن کامل

Deep Reinforcement Learning for 2048

In this paper, we explore the performance of a Reinforcement Learning algorithm using a Policy Neural Network to play the popular game 2048. After proposing a modelization of the state and action spaces, we review our learning process, and train a first model without incorporating any prior knwoledge of the game. We prove that a simple Probabilistic Policy Network achieves a 4 times higher maxi...

متن کامل

Autonomous Quadrotor Landing using Deep Reinforcement Learning

Landing an unmanned aerial vehicle (UAV) on a ground marker is an open problem despite the effort of the research community. Previous attempts mostly focused on the analysis of hand-crafted geometric features and the use of external sensors in order to allow the vehicle to approach the land-pad. In this article, we propose a method based on deep reinforcement learning that only requires low-res...

متن کامل

Automatic Bridge Bidding Using Deep Reinforcement Learning

Bridge is among the zero-sum games for which artificial intelligence has not yet outperformed expert human players. The main difficulty lies in the bidding phase of bridge, which requires cooperative decision making under partial information. Existing artificial intelligence systems for bridge bidding rely on and are thus restricted by human-designed bidding systems or features. In this work, w...

متن کامل

Efficient Deep Web Crawling Using Reinforcement Learning

Deep web refers to the hidden part of the Web that remains unavailable for standard Web crawlers. To obtain content of Deep Web is challenging and has been acknowledged as a significant gap in the coverage of search engines. To this end, the paper proposes a novel deep web crawling framework based on reinforcement learning, in which the crawler is regarded as an agent and deep web database as t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal on Selected Areas in Communications

سال: 2022

ISSN: ['0733-8716', '1558-0008']

DOI: https://doi.org/10.1109/jsac.2022.3180787