Intelligent Natural Gas and Hydrogen Pipeline Dispatching Using the Coupled Thermodynamics-Informed Neural Network and Compressor Boolean Neural Network

نویسندگان

چکیده

Natural gas pipelines have attracted increasing attention in the energy industry thanks to current demand for green and advantages of pipeline transportation. A novel deep learning method is proposed this paper, using a coupled network structure incorporating thermodynamics-informed neural compressor Boolean network, incorporate both functions transportation safety check supply predictions. The model uniformed structure, prediction efficiency accuracy are validated by number numerical tests simulating various engineering scenarios, including hydrogen pipelines. trained can provide dispatchers with suggestions about phases existing during as an index showing safety, while effects operation temperature, pressure compositional purity investigated suggest optimized productions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Forecasting Natural Gas Demand Using Meteorological Data: Neural Network Method

The need for prediction and patterns of gas consumption especially in the cold seasons is essential for consumption management and policy planning decision making. In residential and commercial uses which account for the bulk of gas consumption in the country the effects of meteorological variables have the highest impact on consumption.  In the present research four variables include daily ave...

متن کامل

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

Predicting Gestational Diabetes Using an Intelligent Neural Network Algorithm

Introduction: Due to the large amount of data on people with diabetes, it is very difficult to extract the predictors of diabetes. Data mining science has achieved this important goal with the help of its effective methods with the aim of discovering the prediction of diseases and has helped physicians and medical staff in predicting and diagnosing diseases.    Methods: The present research is...

متن کامل

Neural Network and Data Fusion in the Application Research of Natural Gas Pipeline Leakage Detection

For natural gas pipeline, it has a leak or not is critical. The most commonly problems in the pipeline leak detection methods are the difficulties to identify, inaccuracy to locate, thus, the natural gas pipeline detection is difficult to be applied, therefore, the use of neural network multi-sensor data fusion of the natural gas pipeline leak detection is particularly important. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Processes

سال: 2022

ISSN: ['2227-9717']

DOI: https://doi.org/10.3390/pr10020428