Intelligent Computing Based Formulas to Predict the Settlement of Shallow Foundations on Cohesionless Soils
نویسندگان
چکیده
منابع مشابه
Evolutionary-based approaches for settlement prediction of shallow foundations on cohesionless soils
Due to the heterogeneous nature of granular soils and the involvement of many effective parameters in the geotechnical behavior of soil-foundation systems, the accurate prediction of shallow foundation settlements on cohesionless soils is a complex engineering problem. In this study, three new evolutionary-based techniques, including evolutionary polynomial regression (EPR), classical genetic p...
متن کاملevolutionary-based approaches for settlement prediction of shallow foundations on cohesionless soils
due to the heterogeneous nature of granular soils and the involvement of many effective parameters in the geotechnical behavior of soil-foundation systems, the accurate prediction of shallow foundation settlements on cohesionless soils is a complex engineering problem. in this study, three new evolutionary-based techniques, including evolutionary polynomial regression (epr), classical genetic p...
متن کاملPredicting the Settlement of Shallow Foundations on Cohesionless Soils Using Back-Propagation Neural Networks
..........................................................................................................i CONTENTS ..........................................................................................................ii
متن کاملBearing Capacity of Shallow Foundations on Cohesionless Soils: A Random Forest Based Approach
Determining the ultimate bearing capacity (UBC) is vital for design of shallow foundations. Recently, soft computing methods (i.e. artificial neural networks and support vector machines) have been used for this purpose. In this paper, Random Forest (RF) is utilized as a tree-based ensemble classifier for predicting the UBC of shallow foundations on cohesionless soils. The inputs of model are wi...
متن کاملUse of Minimax Probability Machine Regression for Modelling of Settlement of Shallow Foundations on Cohesionless Soil
This article examines the performance of Minimax Probability Machine Regression (MPMR) for prediction of settlement(s) of shallow foundation on cohesionless soil. MPMR maximizes the minimum probability that future predicted outputs of the regression model will be within some bound of the true regression function. Width of footing (B), net applied pressure (q), average Standard Penetration Test ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Open Civil Engineering Journal
سال: 2019
ISSN: 1874-1495
DOI: 10.2174/1874149501913010001