Integrodifferential equations with analytic semigroups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrodifferential Equations with Analytic Semigroups

In this paper we study a class of integrodifferential equations considered in an arbitrary Banach space. Using the theory of analytic semigroups we establish the existence, uniqueness, regularity and continuation of solutions to these integrodifferential equations.

متن کامل

Integrodifferential Equations with Non-autonomous Operators

The result of Da Prato and Sinestrari [3] concerning the non-autonomous evolution operators of hyperbolic type for the equation u′(t) = A(t)u(t) + f(t), t ∈ [0, T ], w(0) = w0, is applied to the study of u′(t) = A(t) [ u(t)+ ∫ t −∞ G(t, s)u(s)ds ] +K(t)u(t)+f(t), t ∈ [0, T ], u(s) = φ(s), s ≤ 0, which models linear viscoelasticity. Here A(·) satisfies all the requirements of Kato’s semigroup ap...

متن کامل

On Analytic Integrated Semigroups

The known definition of an analytic n-times integrated semigroup is reconsidered and one superfluous condition is removed. It is proved that every densely defined generator of an exponentially bounded, analytic n-times integrated semigroup of angle α with the appropriate growth rate at zero is also the generator of an analytic C0-semigroup of the same angle. AMS Mathematics Subject Classificati...

متن کامل

Impulsive integrodifferential Equations and Measure of noncompactness

This paper is concerned with the existence of mild solutions for impulsive integro-differential equations with nonlocal conditions. We apply the technique measure of noncompactness in the space of piecewise continuous functions and by using Darbo-Sadovskii's fixed point theorem, we prove reasults about impulsive integro-differential equations for convex-power condensing operators.

متن کامل

Quantitative Homogenization of Analytic Semigroups and Reaction–diffusion Equations with Diophantine Spatial Frequencies

Based on an analytic semigroup setting, we first consider semilinear reaction–diffusion equations with spatially quasiperiodic coefficients in the nonlinearity, rapidly varying on spatial scale ε. Under periodic boundary conditions, we derive quantitative homogenization estimates of order ε on strong Sobolev spaces H in the triangle 0 < γ < min(σ − n/2, 2− σ). Here n denotes spatial dimension. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics and Stochastic Analysis

سال: 2003

ISSN: 1048-9533,1687-2177

DOI: 10.1155/s1048953303000133