Integrating TM and ancillary geographical data with classification trees for land cover classification of marsh area
نویسندگان
چکیده
منابع مشابه
Improving Land-cover Classification with a Knowledge- Based Approach and Ancillary Data
The classification of land cover is one of the major applications of remotely sensed data. However, the distinction of different classes is often challenging because of spectral similarities. Numerous studies are published describing advanced methods for separation of spectral similar land-cover classes from the remote sensed images. But there are still limitations in terms of classification ac...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Integrating Contextual Information with per-Pixel Classification for Improved Land Cover Classification
A hybrid segmentation procedure to integrate contexcompared to traditional per-pixel maximum likelihood classification results. Elsevier Science Inc., 2000 tual information with per-pixel classification in a metropolitan area land cover classification project is described and evaluated. It is presented as a flexible tool within a INTRODUCTION commercially available image processing environment...
متن کاملdata mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولOptimal Bayesian Classifier for Land Cover Classification Using Landsat TM Data
An optimal Bayesian classifier using mixture distribution class models with joint learning of loss and prior probability functions is proposed for automatic land cover classification. The probability distribution for each land cover class is more realistically modeled as a population of Gaussian mixture densities. A novel two-stage learning algorithm is proposed to learn the Gaussian mixture mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Geographical Science
سال: 2009
ISSN: 1002-0063,1993-064X
DOI: 10.1007/s11769-009-0177-y