Integral Inequalities for Second-Order Linear Oscillation
نویسندگان
چکیده
منابع مشابه
Integral Criteria for Second-Order Linear Oscillation
We present several new criteria for the oscillation of the second-order linear equation y(t) + q(t)y(t) = 0, in which the coefficient q may or may not change signs. The criteria involve the integral ∫ tq(t) dt for some γ > 0. The special case γ = 2 is then studied in greater details. AMS Subject Classification: 34C10
متن کاملOscillation of Second Order Neutral Difference Inequalities with Oscillating Coefficients
In this paper, we established some sufficient conditions for the oscillation of second order neutral difference inequalities (−1)x(n) { ∆z(n) + (−1)q(n)f(x(σ(n))) } ≤ 0, n ≥ n0 (∗) where δ = 0 or δ = 1, z(n) = x(n) + p(n)x(n − τ), τ is a positive integer, {p(n)}, {q(n)} are sequences of real numbers, {σ(n)} is a sequence of nonnegative integers and f : R → R where R is the set of real numbers. ...
متن کاملOscillation Criteria for Second-order Linear Differential Equations^)
where p(x) is a continuous positive function for 0<x< oo. Equation (1) is said to be nonoscillatory in (a, oo) if no solution of (1) vanishes more than once in this interval. Because of the Sturm separation theorem, this is equivalent to the existence of a solution which does not vanish at all in (a, oo). The equation will be called nonoscillatory—without the interval being mentioned —if there ...
متن کاملOscillation criteria for second-order linear difference equations
A non-trivial solution of (1) is called oscillatory if for every N > 0 there exists an n > N such that X,X n + , 6 0. If one non-trivial solution of (1) is oscillatory then, by virtue of Sturm’s separation theorem for difference equations (see, e.g., [S]), all non-trivial solutions are oscillatory, so, in studying the question of whether a solution {x,> of (1) is oscillatory, it is no restricti...
متن کاملOscillation and Nonoscillation Criteria for Second-order Linear Differential Equations
Sufficient conditions for oscillation and nonoscillation of second-order linear equations are established. 1. Statement of the Problem and Formulation of Basic Results Consider the differential equation u′′ + p(t)u = 0, (1) where p : [0, +∞[→ [0, +∞[ is an integrable function. By a solution of equation (1) is understood a function u : [0,+∞[→] − ∞, +∞[ which is locally absolutely continuous tog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 1999
ISSN: 1331-4343
DOI: 10.7153/mia-02-06