Integral equations and the interior Dirichlet potential problem
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولThe Dirichlet Problem with Prescribed Interior Singularities
In this paper we solve the nonlinear Dirichlet problem (uniquely) for functions with prescribed asymptotic singularities at a finite number of points, and with arbitrary continuous boundary data, on a domain in R. The main results apply, in particular, to subequations with a Riesz characteristic p ≥ 2. It is shown that, without requiring uniform ellipticity, the Dirichlet problem can be solved ...
متن کاملThe Dirichlet Problem for Nonuniformly Elliptic Equations
and repeated indices indicate summation from 1 to n. The functions a'(x, u, p), a(x, u, p) are defined in QX£ n + 1 . If furthermore for any ikf>0, the ratio of the maximum to minimum eigenvalues of [a(Xy u, p)] is bounded in ÛX( — M, M)XE, Qu is called uniformly elliptic. A solution of the Dirichlet problem Qu = Q, u—<f)(x) on <50 is a C(n)P\C(O) function u(x) satisfying Qu = 0 in £2 and agree...
متن کاملBoundary Integral Equations for the Biharmonic Dirichlet Problem on Nonsmooth Domains
In this paper we study boundary integral formulations of the interior and exterior Dirichlet problem for the bi{Laplacian in a plane domain with a piecewise smooth boundary having corner points. The mapping properties of single and double layer bihar-monic potentials, of the Calderon projections and the Poincar e-Steklov operators for such domains are analysed. We derive direct boundary integra...
متن کاملNonlinear Integral Equations for Shape Reconstruction in the Inverse Interior Scattering Problem‡
In this paper, we consider the inverse scattering problem of recovering the shape of a perfectly conducting cavity from one source and several measurements placed on a curve inside the cavity. Under restrictive assumptions on the size of the cavity, a uniqueness theorem for finitely many excitations is given. Based on a system of nonlinear and ill-posed integral equations for the unknown bounda...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1978
ISSN: 0021-9045
DOI: 10.1016/0021-9045(78)90043-6